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Problems

Show that if x,y,z is a Pythagorean triple and n is an integer n > 2, then
x" 4yt # 2"

Show that Fermat's last theorem is a consequence of Theorem 11.2, and the
assertion that x? + y? = zP has no solutions in nonzero integers when p is an
odd prime.

Using Fermat's little theorem, show that if p is prime and
a) ifxP' 4 yPt =2z thenp | xyz .
b) if x? + y? = z?, then p | (x+y—2).

Show that the diophantine equation x*—y* =z’ has no solutions in nonzero
integers using the method of infinite descent.

Using problem 4, show that the area of a right triangle with integer sides is
never a perfect square.

Show that the diophantine equation x* + 4y® = z* has no solutions in nonzero
integers.

Show that the diophantine equation x' — 8y* = z* has no solutions in nonzero
integers.

Show that the diophantine equation x* + 3y* = z* has infinitely many solutions.
Show that in a Pythagorean triple there is at most one perfect square.

Show that the diophantine equation x?+ y* =z’ has infinitely many integer
solutions by showing that for each positive integer k the integers
x =3k*=1,y = k(k*-3), z = k* + 1 form a solution.

Computer Projects

Write a computer program to search for solutions of diophantine equations such

as x" + y" ==z".

11.3 Pell’s Equation
In this section, we study diophantine equations of the form

(11.2) x2=dy?=n,

where d and n are fixed integers. When d < 0 and n < 0, there are no
solutions of (11.2). When d < 0 and n > 0, there can be at most a finite
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number of solutions, since the equation x% — dy2 = p implies that |x| < Vn

and |y| < \/n/fd]. Also, note that when d is a perfect square, say d = D?,
then

x*—dy?=x*—p? = (x+Dy)(x—=Dy) =1n .
Hence, any solution of (11.2), when d is a perfect square, corresponds to a
simultaneous solution of the equations
x+Dy=aq
x—Dy=5p,

where a and b are integers such that n = ab. In this case, there are only a
finite number of solutions, since there is at most one solution in integers of
these two equations for each factorization » = ab .

For the rest of this section, we are interested in the diophantine equation
x*—dy?=n, where d and n are integers and d is a positive integer which is
not a perfect square. As the following theorem shows, the simple continued
fraction of Vd is very useful for the study of this equation.

Theorem 11.3. Let d and n be integers such that d > 0, d is not a perfect
square, and |n| < Vd. “If x2 ~ dy? = n, then x/y is a convergent of the
simple continued fraction of V4.

Proof. First consider the case where n > 0. Since x2 — dy? = n, we see that

(11.3) Oc+yVd) (x=yd) = n .
From (11.3), we see that x — y~/d > 0, so that x > y~/d. Consequently,

T _Jd>o,
y

and since 0 < n < \/c7, we see that

X _ 7 G=vdy)
y v

- x=dy?
y(x + yVd)
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Since 0 < X _Jd< 31—2, Theorem 10.18 tells us that x/y must be a
y
convergent of the simple continued fraction of Vd .

When n < 0, we divide both sides of x? —dy?=n by —d, to obtain

1 n
2o (L -2
YT d
By a similar argument to that given when n > 0 , we see that y/x is a
convergent of the simple continued fraction expansion of 1/\/3- . Therefore,
from problem 7 of Section 10.3, we know that x/y = 1/(y/x) must be a
convergent of the simple continued fraction of Vd = 1/(1/4/d). O

We have shown that solutions of the diophantine equation x? — dy?* =n,
where |n| < /d, are given by the convergents of the simple continued
fraction expansion of Jd. The next theorem will help us use these
convergents to find solutions of this diophantine equation.

Theorem 11.4. Let d be a positive integer that is not a perfect square.
Define o = P, + \/(7)/Qk, ay = AR Pisi = arOx — Py, and
Qi+ = d — PE)/Qk, for k =0,1,2,.. where ag = Vd . Furthermore, let
pi/qx denote the kth convergent of the simple continued fraction expansion of

Jd . Then
pi —dgt = D0

Before we prove Theorem 11.4, we prove a useful lemma.

Lemma 11.4. Let r +svd =1+ u~Jd where r,s,t, and u are rational
numbers and d is a positive integer that is not a perfect square. Then r =1
and s = u.

Proof. Since r +sJd =1t + u-/d, we see that if s = u then
N
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By Theorem 10.1, (r—t)/(u—s) is rational, and by Theorem 10.2 7 is
irrational. Hence, s = u, and consequently r =¢. 0O

We can now prove Theorem 11 4.

Proof. Since Vd = o = laga,, as,....a, ag+1], Theorem 10.9 tells us that
Va = Sk+1Pi ¥ iy
G1dx * Groy
Since Oy = (Pk+1 + \/‘7)/Qk+l we have

_ P + Vd)py + Quiipiy

Vd = )
Py + Vd) gy + Ok+19x-1

Therefore, we see that

dgi + (Prarqic + Qpiige-)Vd = (Pevipr + Qusipi—r) + pVd.

From Lemma 114, we find that dqr = Prapr + Qrsipi—;  and
Pri1qr + Qk+19k~1 = pr. When we multiply the first of these two equations
by g and the second by Pk, subtract the first from the second, and then
simplify, we obtain

PR —dg} = (prg- = Pk=191) Q1 = (=D*7'0, 4,

where we have used Theorem 10.10 to complete the proof. O

The special case of the diophantine equation x2 — dy’=n with n =1 is
called Pell’s equation. We will use Theorems 11.3 and 11.4 to find all
solutions of Pell’s equation and the related equation x2 — dy? = ~1.

Theorem 11.5. Let d be a positive integer that is not a perfect square. Let
Pr/qx denote the kth convergent of the simple continued fraction of Vd,
k =1,23,.. and let n be the period length of this continued fraction. Then,
when n is even, the positive solutions of the diophantine equation
x?—dy’=1 are x = DPjn-1> ¥ =Qjn—1 , j=123,., and the diophantine

equation x?—dy?=—1 has no solutions. When n is odd, the positive
solutions of x2—dyZ=1 are x = P2jn-1Y = q2jn—1, j = 1,2,3,... and the
solutions of x? — dy? = —1 are x = P@j-Dn-1Y = q@j—n-1»j = 1,2,3,... .

Proof. Theorem 11.3 tells us that if X0,Yo iS a positive solution of
x% —dy? = £1, then xq = py, yo = gk where p;/q, is a convergent of the
simple continued fraction of vd. On the other hand, from Theorem 11.4 we
know that
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pt —dgt = (1D Qe

where Qy+1 is as defined in the statement of Theorem 11.4.

Because the period of the continued expansion of Jd is n, we know that

Po+ Vd
Qjn = Qo=1forj =123, (since Vd = ——OQ——). Hence,
0

p]%z—l -d qj%l—l = (_l)annj = (—'l)jn-
This equation shows that when n is even pj,_i qjn-1 15 a solution of
x2—dy*=1 for j =1,23,.., and when n is odd, pajn—1, d2jn-1 is a solution

of x2—dy*=1 and py(-nn-1.92G-Dn—1 IS 2 solution of x? — dy? = —1 for
j=123,...

To show that the diophantine equations x? — dy® =1 and x?—dy? = -1
have no solutions other than those already found, we will show that Qk+; = 1
implies that n|k and that Q; # —lforj= 1,2,3....

We first note that if Qz41 = 1, then
Q1 = Pror + Vd.
Since ag+; = l@g+13ak+2----1, the continued fraction expansion of a4 is_purely

periodic. Hence, Theorem 10.20 tells us that =1 < ag41 = Pry1 — Jd <o.
This implies that Pg4; = [V/d ], so that oy = ag, and n |k .

To see that Q; # —1 for j =123,.., note that Q; = —1 implies that
aj = —P; —Jd . Since a; has a purely periodic simple continued fraction
expansion, we know that

“1<aj=-P;+~d <0

and

From the first of these inequalities, we see that P; > —Jd and, from the
second, we see that P; < —1—/d. Since these two inequalities for p; are
contradictory, we see that Q; = —1.

Since we have found all solutions of x2—dy? =1 and x’—dy? = —1, where
x and y are positive integers, we have completed the proof. O

We illustrate the use of Theorem 11.5 with the following examples.

Example. Since the simple continued fraction of V13 is [3:1,1,1,1,6] the
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positive solutions of the diophantine equation x2 — 132 =1 are P10j~1-910j~1,
Jj =123,... where Pioj-1/910j—1 is the (10j—1)th convergent of the simple
continued fraction expansion of +I3. The least positive solution is
P9 =649, go=180. The positive solutions of the diophantine equation
x2-13y2 = -1 are Pioj-6:910j~6: = 1,2,3,...; the least positive solution is
Pa= 18,‘14 = 5.

Example. Since the continued fraction of V14 is [3;1,2,1,6], the positive
solutions of x2 — 14y2 =1 are Paj-1,94j-1, ] = 1,2,3,... where P4j-1/q4j-1 is
the jth convergent of the simple continued fraction expansion of v/14. The
least positive solution s P3=15,g3=4. The diophantine equation
x?— 14y = —1 has no solutions, since the period length of the simple
continued fraction expansion of V14 is even.

We conclude this section with the following theorem that shows how to find
all the positive solutions of Pell’s equation x2 — dy? = 1 from the least positive
solution, without finding subsequent convergents of the continued fraction
expansion of Vd .

Theorem 11.6. Let x,,y, be the least positive solution of the diophantine
equation x? — dy? =1, where d is a positive integer that is not a perfect
square. Then all positive solutions x,y, are given by

Xk +yk\/_= (xl + ¥, \/J)k

for k =1,2.3,.... (Note that X, and y; are determined by the use of Lemma
11.4).

Proof. We need to show that x,p; is a solution for k = 1,2,3,... and that
every solution is of this form.

To show that x;,y; is a solution, first note that by taking conjugates, it
follows that x; — y,/d = (x; = y\Vd)*, because from Lemma 10.4, the
conjugate of a power is the power of the conjugate. Now, note that

xg = dyt = G + yVd) (x, — yeNd)
(xl +y1'\/d—)k(XI _y]\/j)k
= (xf —dyp)*

= 1.

Hence x;,y; is a solution for k = 1,2,3,....

To show that every positive solution is equal to xi,y, for some positive
integer k, assume that X,Y is a positive solution different from Xi,yx for
k =1,2,3,.... Then there is an integer n such that
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(O +y VA" < X + YVd < (x, + yJd)mt.

When we multiply this inequality by () + y1/d)™", we obtain
1 < (Xl —yn/t?)"(X + Y\/CT) < Xy +y1‘\/(7,

since x? — dy} = 1 implies that x, —ylx/g = (x; +y1x/c7)'].
Now let
s +tvd = (x; — "X + YVd),

and note that

s2—dit= (s —tJd) (s +tJd)

() + yVd)"(X - YVd) () — yiVd) (X + Y~d)
(x? —dy)"(x? — dy?

= 1.

I

We see that s,¢ is a solution of x2 — dy? = 1, and furthermore, we know that
| < s +tJd < x; +y1\/d_. Moreover, since we know that s + tNd > 1,
we see that 0 < (s + t+/d)™' < 1. Hence

s=1?[(s+t\/21—)+(s—t\/c7)]>0

and

1

zﬁ[(s +1d) = (s —tNd)1 > 0.

{ =

This means that s,¢ is a positive solution, so that s > x; and 7-2 yy, by the
choice of x,,y; as the smallest positive solution. But this contradicts the
inequality s + (Nd < x + yp/cY. Therefore X,Y must be xi.,yx for some
choice of k. 8

To illustrate the use of Theorem 11.6, we have the following example.
Example. From a previous example we know that the least positive solution of

the diophantine equation x> — 13y? =1 is x; = 649, y; = 180. Hence, all
positive solutions are given by xx, yk where

xi + yi V13 = (649 + 180V13)* .

For instance, we have
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X3+ ypV13 = 842361 + 23364013

Hence x, = 842361, y, = 233640 s the least positive solution of
x? = 13y2 = 1, other than X; =649, y, = 180.

11.3 Problems

1. Find all the solutions of each of the following diophantine equations
a) x?+3yt=4
b) x2+5y2=7
¢ 2x%+ 7y? = 30.

2. Find all the solutions of each of the following diophantine equations
a) x2—-y?=3
b) x?—4y2=40
c) 4x? -9y = 100.

3. For which of the following values of n does the diophantine equation
x? = 31y% = 1 have a solution

a) 1 d -3
b) -1 e) 4
c) 2 ) -57

4. Find the least positive solution of the diophantine equations

a)  x?-29y2 =1
b)) x?-292=1.

5. Find the three smallest positive solutions of the diophantine equation

x? =37y = 1.
6. For each of the following values of 4 determine whether the diophantine
equation x? — dy? = —1 has solutions
a) 2 e 17
b) 3 f) 31
c) 6 g 41
d 13 h) 50

7. The least positive solution of the diophantine equation x?—61y2=1 is
Xy = 1766319049, y, = 226153980. Find the least positive solution other than

X1,
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8. Show that if py/g; is a conve:%e_nt of the simple continued fraction expansion of
Vd then lpt — dg?| < 1+ 2Vd.
9. Show that if 4 is a positive integer divisible by a prime of the form 4k + 3, then
the diophantine equation x2 — dy? = —1 has no solutions.
10. Let d and n be positive integers.
a) Show that if r,s is a solution of the diophantine equation x* — dy? = 1 and
X,Y is a solution of the diophantine equation x2—dy?=n then
Xr = dYs, Xs £ Yr is also-a solution of x2 — dy? = n.
b) Show that the diophantine equation x2 — dy? = n either has no solutions, or
infinitely many solutions.
I1. Find those right triangles having legs with lengths that are consecutive integers.
(Hint: use Theorem 11.1 to write the lengths of the legs as x = s> — r? and
y = 2st, where s and ¢ are positive integers such that (s,;t) =1, s > ¢ and s
and ¢ have opposite parity. Then x —y =1 implies that
(s —1)—2r= 1)
12.  Show that each of the following diophantine equations has no solutions

a) x*—-2*=1 b x*-2?=-1

11.3 Computer Projects

Write programs to do the following:

1.

Find those integers n with |n| < v such that the diophantine equation
x%* — dy? = n has no solutions.

Find the least positive solutions of the diophantine equations x? ~ dy* = 1 and
2 2
x*—dy*=—I.

Find the solutions of Pell’s equation from the least positive solution (see Theorem
11.6).




